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 The Kletek sub-watershed, located on the southern slopes of Mount Kawi, 
exhibits volcanic landforms shaped by ongoing volcanic activity. The area’s 
topography is highly varied, with 56.81% of the terrain consisting of slopes 
greater than 15%, making it prone to erosion. Dominant soil types, Inceptisol and 
Andisol, show medium to high susceptibility to erosion, as indicated by their 
soil erodibility index. Mesolandform studies have been instrumental in 
evaluating soil development and agricultural land monitoring, highlighting the 
need for effective erosion mitigation. Agriculture in the region focuses on 
robust coffee cultivation, essential for the local economy. Erosion control 
measures are crucial, using the soil erodibility method based on the Normalized 
Difference Soil Index (NDSI) derived from Sentinel 2A imagery. Key factors such 
as soil texture, organic matter, structure, and permeability determine soil 
erodibility and influence NDSI values. Statistical analyses, including MAPE 
(Mean Absolute Percentage Error) and ANOVA tests, confirm the model’s 
accuracy, with MAPE showing 7% reliability. ANOVA further reveals a 
significant correlation between soil erodibility and landform types, indicating 
varying levels of erodibility across the sub-watershed. These results emphasize the 
importance of mitigation erosion control to sustain agricultural productivity, 
particularly in coffee cultivation.  
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Introduction  

The Kletek sub-watershed is a tributary area of the main river that crosses the Brantas watershed and flows in 
the South Slope area of Gunung Kawi. The sub-watershed area is part of the watershed area, which is divided based 
on the contour lines of the highest elevations surrounding the tributary streams (Sajadi et al., 2022). The Kletek 
Sub-watershed area is on the southern slope of Mount Kawi and has various landform types because this area is a 
volcanic area due to the volcanic activity of Mount Kawi-Butak. Landform types consist of shape patterns and terrain 
that show particular variations in the size, scale, and shape of geomorphic features (MacMillan & Shary, 2009; 
Mokarram & Sathyamoorthy, 2018). The various characteristics of landforms in the southern part of Mount Kawi 
can be classified up to the size of the mesolandform, namely <1000 Ha, as an effort to monitor the land. The 
classification of meso-relief as mesolandform involves identifying and categorizing landforms based on their 
geometric and physical properties (Borisevich, 2016). 

Land characteristics in the Kletek sub-watershed have diverse’s topography, and 56.81% is dominated by 
rather steep to steep slopes (>15%), and the majority of farmers there cultivate robusta coffee plants based on people's 
coffee plantations. Because the land conditions in the Kletek sub-watershed are diverse and there is management of 
annual crops (I. Meya et al., 2020), erosion mitigation efforts are needed through soil sensitivity (Fiantis et al., 2019; 
Toohey et al., 2018). The unique composition of volcanic soils contributes to their fertility but also necessitates specific 
management practices to prevent erosion, especially on sloped terrains where coffee is often cultivated (Ricci et al., 
2020; Santoso et al., 2019). 
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The general study used to analyze is the erodibility value of soil with the equation (Wischmeier & Smith, 
1978) i.e. (100 K = 1.292 [2.1M1.14 (10-4) (12-a) + 3.25 (b-2) + 2.5 (c-3)]), where K = soil erodibility; M = (% silt 
+ % very fine sand) × (100 - % clay); a = Percentage of organic matter (% C- organic × 1.724); b = Soil structure 
class; c = Soil permeability class code. Soils with high clay content tend to have lower erodibility due to their cohesive 
properties, while sandy soils are more susceptible to erosion (Ibeje, 2016). Higher levels of organic matter improve 
soil structure and increase water retention, thereby reducing erodibility (Karlen & Cambardella, 2020; Seitz et al., 
2019). While the loss of organic matter due to land-use changes can increase soil erodibility (Arunrat et al., 2020; 
Ramesh et al., 2019). Conservation tillage can reduce soil disturbance and enhance organic matter, leading to lower 
erodibility (Borrelli et al., 2017; Mohammed et al., 2020). Soil erodibility refers to the susceptibility of the soil to 
the release and transport of erosion, which reflects the strength of the soil's resistance to erosion (Sholikah et al., 
2024; Sholikah et al., 2024; Zhu et al., 2022). Understanding soil erodibility is essential for predicting erosion rates and 
implementing effective soil conservation strategies (Bonetti et al., 2019; Fokeng et al., 2020). 

Mitigation erosion can be supports the United Nation Sustainable Development Goals (SDGs) is through 
mitigating climate change and land use change, which significantly impact agricultural productivity and ecosystem 
stability. The global dynamics of soil erosion is critical for decision-making to achieve the SDGs program, as it 
enables forecasting of erosion trends and implementation of effective soil conservation (Borrelli et al., 2020). 
These practices are critical for maintaining agricultural productivity and ensuring food security, which directly 
aligns with SDG 2 (Zero Hunger). Furthermore, the integration of agroecological practices, which promote 
sustainable land use and soil conservation, is essential for smallholder farmers to effectively combat soil erosion 
(Tibasiima et al., 2022). The application of soil conservation services (SCS) is another important aspect of erosion 
mitigation that supports the SDGs. SCS plays an important role in improving soil fertility, enhancing water quality 
and increasing carbon sequestration, which collectively contribute to climate resilience (Singh et al., 2024). The 
positive correlation between SCS and SDG 15 (Life on Land) suggests that effective soil management practices 
can lead to significant improvements in soil health and biodiversity (Yin et al., 2022). The use of innovative 
technologies to monitor soil erosion dynamics informs policy and prioritizes erosion mitigation areas (G. Chen 
et al., 2024) will maintain water sustainability supporting SDG 6 (Clean Water and Sanitation).  

As technology develops, satellites are used to take satellite imagery, which can process data spatially to analyze 
objects or phenomena on the Earth's surface (Dziob et al., 2020; Fu et al., 2020). One of the uses of remote sensing 
is the use of NDSI to examine the spectral condition of the land (Sholikah et al., 2024). The research gap based on 
previous research is that there is still no integration between soil erodibility index modeling using spatial data in the 
form of NDSI on smallholder coffee plantations based on the condition of land characteristics in the form of 
mesolandform. NDSI is a form of spectral transformation that normalizes the ground cover factor through a 
combination of bands in aerial photos, namely near-infrared and green. NDSI is capable of spectral analysis of soil 
with dense vegetation cover. The NDSI formula developed is NDSI=(B8-B3)/(B8+B3), where B8 is near-
infrared, and B3 is green (Deng et al., 2015). Utilization of NDSI can be used to estimate the amount of erosion. 
NDSI has been frequently used to estimate soil erosion as well as to evaluate soil erosion status and assess soil 
properties (Xu et al., 2019). 

This research aims to assess soil erodibility within the Kletek Sub-watershed by utilizing the Normalized 
Difference Soil Index (NDSI) across various landforms, focusing on mesolandform plots as distinct unit areas. 
The NDSI, an index derived from remote sensing data, has proven to be a reliable tool for identifying soil 
properties linked to erodibility, offering a quantifiable method for evaluating soil susceptibility to erosion. By 
examining the relationship between NDSI values and erodibility across different landforms, this study intends to provide 
critical insights into the spatial variability of soil vulnerability, which is essential for sustainable land management 
practices. The results of this analysis are expected to offer valuable information for the management of local coffee 
plantations, as soil erosion can significantly impact agricultural productivity. Moreover, the findings will contribute 
to improving watershed management strategies, ensuring the long-term stability of agricultural landscapes in the 
region. 

Materials and Methods 

Study area location 
The research was conducted in the Kletek sub-watershed, which includes the sub-districts, namely Sumberpucung 

sub- district, Wonosari sub-district, Ngajum sub-district, and Kromengan sub-district, which are part of Malang 
Regency and Selorejo sub-district in Blitar Regency (Figure 1). The Kletek Sub-watershed area has many coffee 
plantations, especially those managed by local communities. 
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Figure 1. Research location in Kletek sub-watershed 

Field Experimental Design 
The research was carried out using a survey method, which was divided into several stages, including data 

preparation, image data processing, and data analysis. Mesolandform distribution is created as a land unit created with 
the limiting factors of Vegetation, Slope, Curvature, and TPI (Figure 2.). Determining observation points used 
stratified random sampling because there were differences in mesolandform, age, and phase of coffee plants, 
accessibility to land, and coffee land area of more than 1 Ha. Stratified random sampling is a sampling method by 
dividing the population into subgroups and determining points based on characteristics (Berndt, 2020). Stratified 
random sampling involves dividing the entire population into homogeneous groups called strata (singular or 
stratum) (Zhao et al., 2019). 
 

Figure 2. Mesolandform Map 

MAP ADMINISTRATION OF KLETEK 
WATERSHED 

Mesolandform of Kletek Sub Watershed Map 
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Radiometric correction 
Before processing spatial data, pre-processing is carried out to correct the aerial images used with semi-

automatic classification in QGIS 3.24. To produce “smooth” spectral that accurately record ground conditions 
and minimize temporal noise due to sensor-to-sensor differences in atmospheric correction, display geometry, 
or bandpass approaches (Claverie et al., 2018). 
Remote sensing and geographic information system analysis 

The basic data used in this research is using Sentinel-2A image photos by transforming the bands into ground 
spectral. The soil index modeling used is the Normalized Difference Soil Index (NDSI). The NDSI formula 
developed is NDSI=(B8-B3)/(B8+B3), where B8 is near-infrared, and B3 is green. The results of the band 
transformation with the equation gave satisfactory results with a maximum NDSI value of 0.43 and a minimum of -
0.14, which shows that soil spectral can be obtained (Vibhute et al., 2017). Spatial data processing uses QGIS 3.34 
to calculate spectral values according to mathematical equations from band combinations for transformation into 
index form (Michael et al., 2024). The creation of erodibility maps can be done using GIS in visualizing soil 
characteristics that affect erosion in terms of soil conditions (Barbosa et al., 2024). 
Statistical analysis 

Processing Statistics using Microsoft Excel 2016 for analysis using correlation and regression methods to 
determine the relationship between erodibility values and mesolandform distribution. There are 10 types of 
mesolandform found in the Kletek sub-watershed, which are considered as treatments and 3 replications were 
taken for each type of mesolandform. Then a validation test was carried out with MAPE values to assess the NDSI 
created. The MAPE value <10% means highly accurate forecasting; 10-20% means good forecasting; 20-50% means 
reasonable forecasting; and >50% inaccurate forecasting (Chicco et al., 2021). 

Result and Discussion 

Erodibility in the Kletek Sub-watershed 

Soil type is a determining factor in the erodibility value because it is a characteristic of soil properties (Raj et 

al., 2023; Shafii et al., 2023). Soil classification systems categorize soils based on their physical and chemical 

properties, such as texture, structure, organic matter content, and moisture retention capacity. These properties 

significantly affect how easily soil particles can be detached and transported by erosive forces such as water and 

wind. The classification of soils into categories based on their erodibility can help predict erosion rates and inform 

management practices. Soils with high clay content typically exhibit greater cohesion and resistance to erosion 

compared to sandy soils, which are more prone to being washed or blown away (Fox et al., 2022; Zhang et al., 

2018). Soil classification is essential for developing targeted erosion control measures (Borrelli et al., 2021). 

The level of erodibility of a type of soil is influenced by various soil parameters that are conditioned during the 

formation and development of the soil (Delgado et al., 2023). Erodibility data was obtained from sub-order 

classification soil type maps whose values were identified from the literature. The types of soil in the Kletek sub-

watershed have the Inceptisols and Andisols soil orders. The following is the erodibility value based on several studies 

conducted in Table 1 and Figure 3. 

Table 1. Erodibility values for soil order types 

Land Sub Order Erodibility Value Source 

Andic Eutrudepts 0.22 (Pambudi & Moersidik, 2019) 

Aquic Eutrudepts 0.10 (Olumuyiwa, 2019) 

Typic Epiaquepts 0.16 (Pambudi & Moersidik, 2019) 

Typic Eutrudepts 0.24 (Pambudi & Moersidik, 2019) 

Typic Happudands 0.21 (Pambudi & Moersidik, 2019) 

Vitric Hapludands 0.15 (Wondrade, 2023) 
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Digital Soil Mapping at Kletek Sub-Watershed 

 

Figure 3. Kletek sub-watershed soil map unit 

Modeling NDSI to Predict Erodibility 

Soil index values using NDSI (Normalized Difference Soil Index) were obtained by converting NIR (Near 
InfraRed) and green digital data from Sentinel 2A imagery. NDSI can represent soil erosion values and can be used 
to analyze the occurrence of soil reflectance values (Xu et al., 2019). NDSI can be used to detect soil index values 
on land with dense vegetation, open ground, and under the forest canopy, but the index value will be smaller in 
areas that have dense vegetation (Lv & Pomeroy, 2019; Madasa et al., 2021). This has something to do with 
erodibility, when the soil is in dense vegetation it will have a low erodibility value. The range of different NDSI 
values is influenced by the results of the transformation of the spectral values by the soil surface conditions 
on each land (Van der Schaaf & van Hateren, 1996; Zhou et al., 2022). The following is a display of the NDSI 
shown in Figure 4. 
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Figure 4. Transformation soil index use NDSI 

To form the model equation, a correlation test was carried out and a regression equation was created to 

determine the factors that influence the erodibility value. NDSI has a close relationship with soil erodibility 

and is directly proportional, this is shown by the correlation coefficient (r) of 0.86. The soil is classified as 

good, as evidenced by the coefficient of determination (R2) of 0.74, where the role of NDSI in predicting 

erodibility is 74%. The equation used to obtain the distribution of soil erodibility is Ŷ=(0.596×NDSI) + 

0.0776, where 0.596 indicates the influence of NDSI in predicting soil erodibility, while 0.0776 indicates the value 

of the erodibility distribution when NDSI is 0. The influence of NDSI in predicting soil erodibility is 

presented in Figure. 5. 

 

                                                   (a) (b) 

Figure 5. Relationship between NDSI and soil erodibility (a=correlation; b=regression) 

NDSI or Normalized Difference Soil Index is an index used to identify areas where soil is the dominant 

background material or to represent differences in reflectance values in soil areas (Viscarra Rossel et al., 2022). 

NDSI images have a range of values between -1 and 1. NDSI values close to -1 indicate surface cover by water, 

NDSI values close to 0 indicate soil cover by plants, NDSI values closer to 1 indicate a higher level of soil 

openness, so the greater the NDSI value means the lower the soil cover (Demattê et al., 2018). The correlation 

test between NDSI index and erodibility value was conducted using the K-USLE method. 

NDSI in predicting soil erodibility in each type of landform has a high level of accuracy. This is proven by 

the results of the validation test using the paired t-test that the calculated t value <t table (-4.21 < 2.04), this 

value shows that the NDSI soil erodibility value used with the soil erodibility data value and soil type does not 
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have a significant difference. Based on the results of the model feasibility analysis using the MAPE method, a value 

of 7% was obtained, which shows that this model is classified as highly accurate forecasting.  

Erodibility value in Mesolandform 

The various types of mesolandforms found in the Kletek Sub-watershed have special characteristics or 

characteristics for each type. The Canyon and Deeply Incides Stream has the shape of a deep valley and is 

associated with a river flow, steep walls (slope >30%), slope direction parallel to the river and plan curvature 

conditions in the form of convergent (concave), divergent (convex), and level (straight). The character and elements of the 

landform will influence its erodibility value. The shape of the land will influence the thickness of the soil solum 

formed during the soil genesis process, usually on sloping land the soil solum is thinner or shallower than on 

flat land (L. Chen et al., 2023; Fazlollahi et al., 2016). There is a strong relationship between land use, soil 

properties and landform components, and erodibility (Vanini & Amini, 2017). 

In the distribution of erodibility values in the Kletek sub-watershed, one of the soil types found was the 

Typic Eutrudepts sub-order soil type, which is located on the upper slopes to the middle slopes and has a 

clayey texture with low clay content. Coarse textured soils (high percentage of very fine sand and dust) have higher 

erodibility values than finer textured soils (Li et al., 2023). The cohesion ability of sand particles is low and 

difficult to compact so that the bearing capacity is not met. This makes it easy for the erodibility value of this 

soil type to be categorized as medium. Then Aquic Eutrudepts is located on the lower slopes, dominated by 

mesolandform types which have slopes between 8-15% and convergent curvature forms such as Midslope 

Drainage and Shallow Valley (8-15%), Upland Drainage and Headwater (8-15%), plain (<8%), and open slope 

(<15%) have a low erodibility value, namely 0.16. The low erodibility value is caused by the nature of Aquic 

Eutrudepts which have a clayey texture and are quite light (Olumuyiwa, 2019). The higher clay content on 

concave slopes is convergent or a reservoir for the flow of soil material, and together with low slope slopes 

generally promotes the deposition of eroded soil particles (Ogban et al., 2022). 

Conclusion 

The analysis of soil erodibility using the Normalized Difference Soil Index (NDSI) across various landforms 
has demonstrated the method’s effectiveness in identifying erodibility values. The K-factor approach, based on 
soil type, was successfully utilized for this purpose. The derived soil erodibility model, formulated as Ŷ = 
(0.596×NDSI) + 0.0776, provides a reliable tool for assessing soil vulnerability. The accuracy of the NDSI-
based forecasting model is confirmed by a calculated t value of -4.21, which is less than the critical t value of 
2.04, indicating significant statistical validity. Additionally, the application of the Mean Absolute Percentage 
Error (MAPE) method resulted in a highly reliable value of 7%, further validating the model's precision. These 
findings underscore the potential of NDSI as a highly accurate method for forecasting soil erodibility, which is 
critical for effective erosion management and sustainable land use practices. 
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